1. Z. Duanmu W. Liu D. Chen Z. Li Z. Wang Y. Wang and W. Gao. 2019. A Knowledge-Driven Quality-of-Experience Model for Adaptive Streaming Videos. (Nov. 2019). arXiv:1911.07944 [cs.MM] Z. Duanmu W. Liu D. Chen Z. Li Z. Wang Y. Wang and W. Gao. 2019. A Knowledge-Driven Quality-of-Experience Model for Adaptive Streaming Videos. (Nov. 2019). arXiv:1911.07944 [cs.MM]
2. Streaming Video QoE Modeling and Prediction: A Long Short-Term Memory Approach
3. C. Finn P. Abbeel and S. Levine. 2017. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. arXiv:1703.03400 [cs.LG] C. Finn P. Abbeel and S. Levine. 2017. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. arXiv:1703.03400 [cs.LG]
4. F. Y. Yan and H. Ayers , C. Zhu, and S. Fouladi , J. Hong, K. Zhang, P. Levis, and K. Winstein. 2020 . Learning in situ: a randomized experiment in video streaming. In Proceedings of NSDI. F. Y. Yan and H. Ayers, C. Zhu, and S. Fouladi, J. Hong, K. Zhang, P. Levis, and K. Winstein. 2020. Learning in situ: a randomized experiment in video streaming. In Proceedings of NSDI.
5. T-Y. Huang , R. Johari , N. McKeown , M. Trunnell , and M. Watson . 2014. A Buffer-Based Approach to Rate Adaptation: Evidence from a Large Video Streaming Service . In Proceedings of SIGCOMM. 187--198 . T-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. 2014. A Buffer-Based Approach to Rate Adaptation: Evidence from a Large Video Streaming Service. In Proceedings of SIGCOMM. 187--198.