A multistrategy approach for digital text categorization from imbalanced documents

Author:

del Castillo M. Dolores1,Serrano José Ignacio1

Affiliation:

1. Instituto de Automática Industrial (CSIC), Madrid, Spain

Abstract

The goal of the research described here is to develop a multistrategy classifier system that can be used for document categorization. The system automatically discovers classification patterns by applying several empirical learning methods to different representations for preclassified documents belonging to an imbalanced sample. The learners work in a parallel manner, where each learner carries out its own feature selection based on evolutionary techniques and then obtains a classification model. In classifying documents, the system combines the predictions of the learners by applying evolutionary techniques as well. The system relies on a modular, flexible architecture that makes no assumptions about the design of learners or the number of learners available and guarantees the independence of the thematic domain.

Publisher

Association for Computing Machinery (ACM)

Reference26 articles.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal Feature Selection for Imbalanced Text Classification;IEEE Transactions on Artificial Intelligence;2023-02

2. An Enhanced Cos-Neuro Bio-Inspired Approach for Document Clustering;Intelligent Computing and Innovation on Data Science;2021

3. Forecasting the power consumption of a rotor spinning machine by using an adaptive squeeze and excitation convolutional neural network with imbalanced data;Journal of Cleaner Production;2020-12

4. Data stream classification: a review;Iran Journal of Computer Science;2020-05-27

5. A hybrid approach for classification of rare class data;Knowledge and Information Systems;2017-10-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3