Class imbalances versus small disjuncts

Author:

Jo Taeho1,Japkowicz Nathalie1

Affiliation:

1. University of Ottawa, Ottawa, Ontario, Canada

Abstract

It is often assumed that class imbalances are responsible for significant losses of performance in standard classifiers. The purpose of this paper is to the question whether class imbalances are truly responsible for this degradation or whether it can be explained in some other way. Our experiments suggest that the problem is not directly caused by class imbalances, but rather, that class imbalances may yield small disjuncts which, in turn, will cause degradation. We argue that, in order to improve classifier performance, it may, then, be more useful to focus on the small disjuncts problem than it is to focus on the class imbalance problem. We experiment with a method that takes the small disjunct problem into consideration, and show that, indeed, it yields a performance superior to the performance obtained using standard or advanced solutions to the class imbalance problem.

Publisher

Association for Computing Machinery (ACM)

Reference14 articles.

1. P. M. Murphy and D. W. Aha. UCI Repository of Machine Learning Databases. University California at Irvine Department of Information and Computer Science.]] P. M. Murphy and D. W. Aha. UCI Repository of Machine Learning Databases. University California at Irvine Department of Information and Computer Science.]]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3