Systematic Scalability Modeling of QoS-aware Dynamic Service Composition

Author:

Duboc Leticia1ORCID,Bahsoon Rami2ORCID,Alrebeish Faisal3ORCID,Mera-Gómez Carlos4ORCID,Nallur Vivek5ORCID,Kazman Rick6ORCID,Bianco Philip7ORCID,Babar Ali8ORCID,Buyya Rajkumar9ORCID

Affiliation:

1. La Salle - University Ramon Lull, Spain

2. University of Birmingham, Birmingham, United Kingdom

3. King Abdulaziz City for Science and Technology, SA

4. ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador

5. University College Dublin, Ireland

6. Software Engineering Institute - Carnegie Mellon University and University of Hawaii

7. Software Engineering Institute - Carnegie Mellon University

8. The University of Adelaide, Australia

9. The University of Melbourne, Australia

Abstract

In Dynamic Service Composition (DSC), an application can be dynamically composed using web services to achieve its functional and Quality of Services (QoS) goals. DSC is a relatively mature area of research that crosscuts autonomous and services computing. Complex autonomous and self-adaptive computing paradigms (e.g., multi-tenant cloud services, mobile/smart services, services discovery and composition in intelligent environments such as smart cities) have been leveraging DSC to dynamically and adaptively maintain the desired QoS, cost and to stabilize long-lived software systems. While DSC is fundamentally known to be an NP-hard problem, systematic attempts to analyze its scalability have been limited, if not absent, though such analysis is of a paramount importance for their effective, efficient, and stable operations. This article reports on a new application of goal-modeling, providing a systematic technique that can support DSC designers and architects in identifying DSC-relevant characteristics and metrics that can potentially affect the scalability goals of a system. The article then applies the technique to two different approaches for QoS-aware dynamic services composition, where the article describes two detailed exemplars that exemplify its application. The exemplars hope to provide researchers and practitioners with guidance and transferable knowledge in situations where the scalability analysis may not be straightforward. The contributions provide architects and designers for QoS-aware dynamic service composition with the fundamentals for assessing the scalability of their own solutions, along with goal models and a list of application domain characteristics and metrics that might be relevant to other solutions. Our experience has shown that the technique was able to identify in both exemplars application domain characteristics and metrics that had been overlooked in previous scalability analyses of these DSC, some of which indeed limited their scalability. It has also shown that the experiences and knowledge can be transferable: The first exemplar was used as an example to inform and ease the work of applying the technique in the second one, reducing the time to create the model, even for a non-expert.

Funder

European Union’s Horizon 2020

Marie Skłodowska-Curie

Agency for Business Competitiveness of the Government of Catalonia

Publisher

Association for Computing Machinery (ACM)

Subject

Software,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3