A Survey of Data Quality Requirements That Matter in ML Development Pipelines

Author:

Priestley Maria1ORCID,O’donnell Fionntán2ORCID,Simperl Elena1ORCID

Affiliation:

1. King’s College London

2. Open Data Institute

Abstract

The fitness of the systems in which Machine Learning (ML) is used depends greatly on good-quality data. Specifications on what makes a good-quality dataset have traditionally been defined by the needs of the data users—typically analysts and engineers. Our article critically examines the extent to which established data quality frameworks are applicable to contemporary use cases in ML. Using a review of recent literature at the intersection of ML, data management, and human-computer interaction, we find that the classical “fitness-for-use” view of data quality can benefit from a more stage-specific approach that is sensitive to where in the ML lifecycle the data are encountered. This helps practitioners to plan their data quality tasks in a manner that meets the needs of the stakeholders who will encounter the dataset, whether it be data subjects, software developers or organisations. We therefore propose a new treatment of traditional data quality criteria by structuring them according to two dimensions: (1) the stage of the ML lifecycle where the use case occurs vs. (2) the main categories of data quality that can be pursued (intrinsic, contextual, representational and accessibility). To illustrate how this works in practice, we contribute a temporal mapping of the various data quality requirements that are important at different stages of the ML data pipeline. We also share some implications for data practitioners and organisations that wish to enhance their data management routines in preparation for ML.

Funder

European Union’s Horizon 2020 research and innovation programme under the projects EUHubs4Data

MediaFutures

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems and Management,Information Systems

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3