Affiliation:
1. University of Groningen, Groningen, The Netherlands
Abstract
A common approach for visualizing data sets is to map them to images in which distinct data dimensions are mapped to distinct visual features, such as color, size and orientation. Here, we consider visualizations in which different data dimensions should receive equal weight and attention. Many of the end-user tasks performed on these images involve a form of visual search. Often, it is simply assumed that features can be judged independently of each other in such tasks. However, there is evidence for perceptual dependencies when simultaneously presenting multiple features. Such dependencies could potentially affect information visualizations that contain combinations of features for encoding information and, thereby, bias subjects into unequally weighting the relevance of different data dimensions. We experimentally assess (1) the presence of judgment dependencies in a visualization task (searching for a target node in a node-link diagram) and (2) how feature contrast relates to salience. From a visualization point of view, our most relevant findings are that (a) to equalize saliency (and thus bottom-up weighting) of size and color, color contrasts have to become very low. Moreover, orientation is less suitable for representing information that consists of a large range of data values, because it does not show a clear relationship between contrast and salience; (b) color and size are features that can be used independently to represent information, at least as far as the range of colors that were used in our study are concerned; (c) the concept of (static) feature salience hierarchies is wrong; how salient a feature is compared to another is not fixed, but a function of feature contrasts; (d) final decisions appear to be as good an indicator of perceptual performance as indicators based on measures obtained from individual fixations. Eye tracking, therefore, does not necessarily present a benefit for user studies that aim at evaluating performance in search tasks.
Publisher
Association for Computing Machinery (ACM)
Subject
Experimental and Cognitive Psychology,General Computer Science,Theoretical Computer Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献