Syntax-aware Offensive Content Detection in Low-resourced Code-mixed Languages with Continual Pre-training

Author:

Bölücü Necva1,Canbay Pelin2

Affiliation:

1. Department of Computer Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey

2. Department of Computer Engineering, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey

Abstract

Social media is a widely used platform that includes a vast amount of user-generated content, allowing the extraction of information about users’ thoughts from texts. Individuals freely express their thoughts on these platforms, often without constraints, even if the content is offensive or contains hate speech. The identification and removal of offensive content from social media are imperative to prevent individuals or groups from becoming targets of harmful language. Despite extensive research on offensive content detection, addressing this challenge in code-mixed languages remains unsolved, characterised by issues such as imbalanced datasets and limited data sources. Most previous studies on detecting offensive content in these languages focus on creating datasets and applying deep neural networks, such as Recurrent Neural Networks (RNNs), or pre-trained language models (PLMs) such as BERT and its variations. Given the low-resource nature and imbalanced dataset issues inherent in these languages, this study delves into the efficacy of the syntax-aware BERT model with continual pre-training for the accurate identification of offensive content and proposes a framework called Cont-Syntax-BERT by combining continual learning with continual pre-training. Comprehensive experimental results demonstrate that the proposed Cont-Syntax-BERT framework outperforms state-of-the-art approaches. Notably, this framework addresses the challenges posed by code-mixed languages, as evidenced by its proficiency on the DravidianCodeMix [10,19] and HASOC 2109 [37] datasets. These results demonstrate the adaptability of the proposed framework in effectively addressing the challenges of code-mixed languages.

Publisher

Association for Computing Machinery (ACM)

Reference63 articles.

1. Publicly Available Clinical

2. Tamil Offensive Language Detection: Supervised versus Unsupervised Learning Approaches

3. Somnath Banerjee Maulindu Sarkar Nancy Agrawal Punyajoy Saha and Mithun Das. 2021. Exploring Transformer Based Models to Identify Hate Speech and Offensive Content in English and Indo-Aryan Languages. In Forum for Information Retrieval Evaluation (Working Notes)(FIRE) CEUR-WS. org.

4. Md Abul Bashar and Richi Nayak. 2020. QutNocturnal@ HASOC’19: CNN for hate speech and offensive content identification in Hindi language. arXiv preprint arXiv:2008.12448(2020).

5. Jasmijn Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani, and Khalil Sima’an. 2017. Graph Convolutional Encoders for Syntax-aware Neural Machine Translation. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. 1957–1967.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3