Affiliation:
1. Carnegie Mellon University and Inria, France
2. Inria, France and ITMO University, Russia
3. Inria, France and Université de Strasbourg, CNRS, ICube, France
4. Inria, France
Abstract
Over the past decade, many programming languages and systems for parallel-computing have been developed, including Cilk, Fork/Join Java, Habanero Java, Parallel Haskell, Parallel ML, and X10. Although these systems raise the level of abstraction at which parallel code are written, performance continues to require the programmer to perform extensive optimizations and tuning, often by taking various architectural details into account. One such key optimization is granularity control, which requires the programmer to determine when and how parallel tasks should be sequentialized.
In this paper, we briefly describe some of the challenges associated with automatic granularity control when trying to achieve portable performance for parallel programs with arbitrary nesting of parallel constructs. We consider a result from the functional-programming community, whose starting point is to consider an "oracle" that can predict the work of parallel codes, and thereby control granularity. We discuss the challenges in implementing such an oracle and proving that it has the desired theoretical properties under the nested-parallel programming model.
Funder
European Research Council
National Science Foundation
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Disentanglement in nested-parallel programs;Proceedings of the ACM on Programming Languages;2020-01