Affiliation:
1. Tsinghua University, China
2. Norwegian University of Science and Technology, Norway
Abstract
Sparse triangular solve (SpTRSV) is one of the most important kernels in many real-world applications. Currently, much research on parallel SpTRSV focuses on level-set construction for reducing the number of inter-level synchronizations. However, the out-of-control data reuse and high cost for global memory or shared cache access in inter-level synchronization have been largely neglected in existing work.
In this paper, we propose a novel data layout called Sparse Level Tile to make all data reuse under control, and design a Producer-Consumer pairing method to make any inter-level synchronization only happen in very fast register communication. We implement our data layout and algorithms on an SW26010 many-core processor, which is the main building-block of the current world fastest supercomputer Sunway Taihulight. The experimental results of testing all 2057 square matrices from the Florida Matrix Collection show that our method achieves an average speedup of 6.9 and the best speedup of 38.5 over parallel level-set method. Our method also outperforms the latest methods on a KNC many-core processor in 1856 matrices and the latest methods on a K80 GPU in 1672 matrices, respectively.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie project
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design,Software
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献