Making pull-based graph processing performant

Author:

Grossman Samuel1,Litz Heiner2,Kozyrakis Christos1

Affiliation:

1. Stanford University

2. University of California

Abstract

Graph processing engines following either the push-based or pull-based pattern conceptually consist of a two-level nested loop structure. Parallelizing and vectorizing these loops is critical for high overall performance and memory bandwidth utilization. Outer loop parallelization is simple for both engine types but suffers from high load imbalance. This work focuses on inner loop parallelization for pull engines, which when performed naively leads to a significant increase in conflicting memory writes that must be synchronized. Our first contribution is a scheduler-aware interface for parallel loops that allows us to optimize for the common case in which each thread executes several consecutive iterations. This eliminates most write traffic and avoids all synchronization, leading to speedups of up to 50X. Our second contribution is the Vector-Sparse format, which addresses the obstacles to vectorization that stem from the commonly-used Compressed-Sparse data structure. Our new format eliminates unaligned memory accesses and bounds checks within vector operations, two common problems when processing low-degree vertices. Vectorization with Vector-Sparse leads to speedups of up to 2.5X. Our contributions are embodied in Grazelle , a hybrid graph processing framework. On a server equipped with four Intel Xeon E7-4850 v3 processors, Grazelle respectively outperforms Ligra, Polymer, GraphMat, and X-Stream by up to 15.2X, 4.6X, 4.7X, and 66.8X.

Funder

National Science Foundation

Samsung

Huawei

Stanford Platform Lab

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enabling Window-Based Monotonic Graph Analytics with Reusable Transitional Results for Pattern-Consistent Queries;Proceedings of the VLDB Endowment;2024-07

2. GraphCube: Interconnection Hierarchy-aware Graph Processing;Proceedings of the 29th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming;2024-02-20

3. CoroGraph: Bridging Cache Efficiency and Work Efficiency for Graph Algorithm Execution;Proceedings of the VLDB Endowment;2023-12

4. An Unequal Caching Strategy for Shared-Memory Graph Analytics;IEEE Transactions on Parallel and Distributed Systems;2023-03-01

5. HLS-based High-throughput and Work-efficient Synthesizable Graph Processing Template Pipeline;ACM Transactions on Embedded Computing Systems;2023-01-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3