Proving termination with multiset orderings

Author:

Dershowitz Nachum1,Manna Zohar1

Affiliation:

1. Stanford Univ., Stanford, CA

Abstract

A common tool for proving the termination of programs is the well-founded set , a set ordered in such a way as to admit no infinite descending sequences. The basic approach is to find a termination function that maps the values of the program variables into some well-founded set, such that the value of the termination function is repeatedly reduced throughout the computation. All too often, the termination functions required are difficult to find and are of a complexity out of proportion to the program under consideration. Multisets ( bags ) over a given well-founded set S are sets that admit multiple occurrences of elements taken from S . The given ordering on S induces an ordering on the finite multisets over S . This multiset ordering is shown to be well-founded. The multiset ordering enables the use of relatively simple and intuitive termination functions in otherwise difficult termination proofs. In particular, the multiset ordering is used to prove the termination of production systems , programs defined in terms of sets of rewriting rules.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference13 articles.

Cited by 396 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanised Uniform Interpolation for Modal Logics K, GL, and iSL;Lecture Notes in Computer Science;2024

2. Proof Theory for Lax Logic;Outstanding Contributions to Logic;2024

3. Reducibility Constraints in Superposition;Lecture Notes in Computer Science;2024

4. Finitary Simulation of Infinitary $\beta$-Reduction via Taylor Expansion, and Applications;Logical Methods in Computer Science;2023-12-20

5. Reasoning About Vectors: Satisfiability Modulo a Theory of Sequences;Journal of Automated Reasoning;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3