Affiliation:
1. Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
Abstract
Single-ISA Asymmetric Multicore (AMC) architectures have shown high performance as well as power efficiency. However, current parallel programming environments do not perform well on AMC because they are designed for symmetric multicore architectures in which all cores provide equal performance. Their random task scheduling policies can result in unbalanced workloads in AMC and severely degrade the performance of parallel applications. To balance the workloads of parallel applications in AMC, this article proposes an adaptive Workload-Aware Task Scheduler (WATS) that consists of a history-based task allocator and a preference-based task scheduler. The history-based task allocator is based on a near-optimal, static task allocation using the historical statistics collected during the execution of a parallel application. The preference-based task scheduler, which schedules tasks based on a preference list, can dynamically adjust the workloads in AMC if the task allocation is less optimal due to approximation in the history-based task allocator. Experimental results show that WATS can improve both the performance and energy efficiency of task-based applications, with the performance gain up to 66.1% compared with traditional task schedulers.
Funder
Shanghai Excellent Academic Leaders Plan
National Natural Science Foundation of China
Program for Changjiang Scholars and Innovative Research Team in University (IRT1158, PCSIRT) China
Ministry of Science and Technology of the People's Republic of China
Publisher
Association for Computing Machinery (ACM)
Subject
Hardware and Architecture,Information Systems,Software
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献