Intelligent Code Completion with Bayesian Networks

Author:

Proksch Sebastian1,Lerch Johannes1,Mezini Mira1

Affiliation:

1. Technische Universität Darmstadt, Darmstadt, Germany

Abstract

Code completion is an integral part of modern Integrated Development Environments (IDEs). Developers often use it to explore Application Programming Interfaces (APIs). It is also useful to reduce the required amount of typing and to help avoid typos. Traditional code completion systems propose all type-correct methods to the developer. Such a list is often very long with many irrelevant items. More intelligent code completion systems have been proposed in prior work to reduce the list of proposed methods to relevant items. This work extends one of these existing approaches, the Best Matching Neighbor (BMN) algorithm. We introduce Bayesian networks as an alternative underlying model, use additional context information for more precise recommendations, and apply clustering techniques to improve model sizes. We compare our new approach, Pattern-based Bayesian Networks (PBN), to the existing BMN algorithm. We extend previously used evaluation methodologies and, in addition to prediction quality, we also evaluate model size and inference speed. Our results show that the additional context information we collect improves prediction quality, especially for queries that do not contain method calls. We also show that PBN can obtain comparable prediction quality to BMN, while model size and inference speed scale better with large input sizes.

Funder

German Federal Ministry of Education and Research

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DeciX: Explain Deep Learning Based Code Generation Applications;Proceedings of the ACM on Software Engineering;2024-07-12

2. AI-Assisted Code Authoring at Scale: Fine-Tuning, Deploying, and Mixed Methods Evaluation;Proceedings of the ACM on Software Engineering;2024-07-12

3. Multi-line AI-Assisted Code Authoring;Companion Proceedings of the 32nd ACM International Conference on the Foundations of Software Engineering;2024-07-10

4. Significant Productivity Gains through Programming with Large Language Models;Proceedings of the ACM on Human-Computer Interaction;2024-06-17

5. A survey on machine learning techniques applied to source code;Journal of Systems and Software;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3