Texture transfer during shape transformation

Author:

Dinh Huong Quynh1,Yezzi Anthony2,Turk Greg2

Affiliation:

1. Stevens Institute of Technology, Hoboken, NJ

2. Georgia Institute of Technology, Atlanta, GA

Abstract

Mappings between surfaces have a variety of uses, including texture transfer, multi-way morphing, and surface analysis. Given a 4D implicit function that defines a morph between two implicit surfaces, this article presents a method of calculating a mapping between the two surfaces. We create such a mapping by solving two PDEs over a tetrahedralized hypersurface that connects the two surfaces in 4D. Solving the first PDE yields a vector field that indicates how points on one surface flow to the other. Solving the second PDE propagates position labels along this vector field so that the second surface is tagged with a unique position on the first surface. One strength of this method is that it produces correspondences between surfaces even when they have different topologies. Even if the surfaces split apart or holes appear, the method still produces a mapping entirely automatically. We demonstrate the use of this approach to transfer texture between two surfaces that may have differing topologies.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Revisiting Map Relations for Unsupervised Non-Rigid Shape Matching;2024 International Conference on 3D Vision (3DV);2024-03-18

2. Unsupervised Representation Learning for Diverse Deformable Shape Collections;2024 International Conference on 3D Vision (3DV);2024-03-18

3. Unsupervised Learning of Robust Spectral Shape Matching;ACM Transactions on Graphics;2023-07-26

4. Self-Supervised Learning for Multimodal Non-Rigid 3D Shape Matching;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

5. Understanding and Improving Features Learned in Deep Functional Maps;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3