Hypertension Detection based on Machine Learning

Author:

Marin Iuliana1,Goga Nicolae2

Affiliation:

1. University POLITEHNICA of Bucharest Bucharest, Romania and University Politehnica of Bucharest, Romania

2. Molecular Dynamics Group, University of Groningen, Groningen, Netherlands

Publisher

ACM

Reference28 articles.

1. Pre-Eclampsia and Eclampsia: An Update on the Pharmacological Treatment Applied in Portugal

2. The classification, diagnosis and management of the hypertensive disorders of pregnancy: a revised statement from the ISSHP;Tranquilli A. L.;Pregnancy Hypertension: An International Journal of Women's Cardiovascular Health,2014

3. Hypertensive Disorders of Pregnancy;Mammaro A.;Journal of Prenatal Medicine,2009

4. C. Visintin M. A. Mugglestone M. Q. Almerie et al. (2010). Management of hypertensive disorders during pregnancy: summary of NICE guidance. British Medical Journal 341. C. Visintin M. A. Mugglestone M. Q. Almerie et al. (2010). Management of hypertensive disorders during pregnancy: summary of NICE guidance. British Medical Journal 341.

5. J. Mayrink M. L. Costa and J. G. Cecatti (2018). Preeclampsia in 2018: Revisiting Concepts Physiopathology and Prediction. The Scientific World Journal. J. Mayrink M. L. Costa and J. G. Cecatti (2018). Preeclampsia in 2018: Revisiting Concepts Physiopathology and Prediction. The Scientific World Journal.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intensify Stroke Prediction Model Associated with Hypertensive State;2024 3rd International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE);2024-04-25

2. Survey and Evaluation of Hypertension Machine Learning Research;Journal of the American Heart Association;2023-05-02

3. Machine Learning for Hypertension Prediction: a Systematic Review;Current Hypertension Reports;2022-06-22

4. Cyber-Physical Platform for Preeclampsia Detection;Computational Science and Its Applications – ICCSA 2020;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3