Plan Bouquets

Author:

Dutt Anshuman1ORCID,Haritsa Jayant R.1

Affiliation:

1. Indian Institute of Science, Bangalore, India

Abstract

Identifying efficient execution plans for declarative OLAP queries typically entails estimation of several predicate selectivities. In practice, these estimates often differ significantly from the values actually encountered during query execution, leading to poor plan choices and grossly inflated response times. We propose here a conceptually new approach to address this classical problem, wherein the compile-time estimation process is completely eschewed for error-prone selectivities. Instead, from the set of optimal plans in the query’s selectivity error space, a limited subset, called the “plan bouquet,” is selected such that at least one of the bouquet plans is 2-optimal at each location in the space. Then, at run time, a sequence of cost-budgeted executions from the plan bouquet is carried out, eventually finding a plan that executes to completion within its assigned budget. The duration and switching of these executions is controlled by a graded progression of isosurfaces projected onto the optimal performance profile. We prove that this construction results, for the first time, in guarantees on worst-case performance sub-optimality. Moreover, it ensures repeatable execution strategies across different invocations of a query. We then present a suite of enhancements to the basic plan bouquet algorithm, including randomized variants, that result in significantly stronger performance guarantees. An efficient isosurface identification algorithm is also introduced to curtail the bouquet construction overheads. The plan bouquet approach has been empirically evaluated on both PostgreSQL and a commercial DBMS, over the TPC-H and TPC-DS benchmark environments. Our experimental results indicate that it delivers substantial improvements in the worst-case behavior, without impairing the average-case performance, as compared to the native optimizers of these systems. Moreover, it can be implemented using existing optimizer infrastructure, making it relatively easy to incorporate in current database engines. Overall, the plan bouquet approach provides novel performance guarantees that open up new possibilities for robust query processing.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RobOpt: A Tool for Robust Workload Optimization Based on Uncertainty-Aware Machine Learning;Companion of the 2024 International Conference on Management of Data;2024-06-09

2. Robust Query Optimization in the Era of Machine Learning: State-of-the-Art and Future Directions;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. dbET: Execution Time Distribution-based Plan Selection;Proceedings of the ACM on Management of Data;2023-05-26

4. Robust query processing;Proceedings of the VLDB Endowment;2020-08

5. Turbocharging database query processing and testing;Communications of the ACM;2019-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3