ParTBC: Faster Estimation of Top- k Betweenness Centrality Vertices on GPU

Author:

Singh Somesh1,Shah Tejas2,Nasre Rupesh1

Affiliation:

1. Indian Institute of Technology Madras, Chennai, Tamil Nadu, India

2. Microsoft, Bellandur, Bengaluru, Karnataka, India

Abstract

Betweenness centrality (BC) is a popular centrality measure, based on shortest paths, used to quantify the importance of vertices in networks. It is used in a wide array of applications including social network analysis, community detection, clustering, biological network analysis, and several others. The state-of-the-art Brandes’ algorithm for computing BC has time complexities of and for unweighted and weighted graphs, respectively. Brandes’ algorithm has been successfully parallelized on multicore and manycore platforms. However, the computation of vertex BC continues to be time-consuming for large real-world graphs. Often, in practical applications, it suffices to identify the most important vertices in a network; that is, those having the highest BC values. Such applications demand only the top vertices in the network as per their BC values but do not demand their actual BC values. In such scenarios, not only is computing the BC of all the vertices unnecessary but also exact BC values need not be computed. In this work, we attempt to marry controlled approximations with parallelization to estimate the k -highest BC vertices faster, without having to compute the exact BC scores of the vertices. We present a host of techniques to determine the top- k vertices faster , with a small inaccuracy, by computing approximate BC scores of the vertices. Aiding our techniques is a novel vertex-renumbering scheme to make the graph layout more structured , which results in faster execution of parallel Brandes’ algorithm on GPU. Our experimental results, on a suite of real-world and synthetic graphs, show that our best performing technique computes the top- k vertices with an average speedup of 2.5× compared to the exact parallel Brandes’ algorithm on GPU, with an error of less than 6%. Our techniques also exhibit high precision and recall, both in excess of 94%.

Funder

Indian Institute of Technology Madras, India

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3