Dynamic adaptation to available resources for parallel computing in an autonomous network of workstations

Author:

Rencuzogullari Umit1,Dwardadas Sandhya1

Affiliation:

1. Department of Computer Science, University of Rochester, Rochester, NY

Abstract

Networks of workstations (NOWs), which are generally composed of autonomous compute elements networked together, are an attractive parallel computing platform since they offer high performance at low cost. The autonomous nature of the environment, however, often results in inefficient utilization due to load imbalances caused by three primary factors: 1) unequal load (compute or communication) assignment to equally-powerful compute nodes, 2) unequal resources at compute nodes, and 3) multiprogramming. These load imbalances result in idle waiting time on cooperating processes that need to synchronize or communicate data. Additional waiting time may result due to local scheduling decisions in a multiprogrammed environment. In this paper, we present a combined approach of compile-time analysis, run-time load distribution, and operating system scheduler cooperation for improved utilization of available resources in an autonomous NOW. The techniques we propose allow efficient resource utilization by taking into consideration all three causes of load imbalance in addition to locality of access in the process of load distribution. The resulting adaptive load distribution and cooperative scheduling system allows applications to take advantage of parallel resources when available by providing better performance than when the loaded resources are not used at all.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parallel Architectures for Bioinformatics;Encyclopedia of Bioinformatics and Computational Biology;2019

2. Multiresolution molecular mechanics: Implementation and efficiency;Journal of Computational Physics;2017-01

3. A Novel Pipeline Approach for Efficient Big Data Broadcasting;IEEE Transactions on Knowledge and Data Engineering;2016-01-01

4. The HPCC/ECL Platform for Big Data;Big Data Technologies and Applications;2016

5. Data Intensive Supercomputing Solutions;Big Data Technologies and Applications;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3