DBPA: A Benchmark for Transactional Database Performance Anomalies

Author:

Huang Shiyue1ORCID,Wang Ziwei1ORCID,Zhang Xinyi1ORCID,Tu Yaofeng2ORCID,Li Zhongliang2ORCID,Cui Bin1ORCID

Affiliation:

1. Peking University, Beijing, China

2. ZTE Corporation, Nanjing, China

Abstract

Anomaly diagnosis is vital to the performance of online transaction processing (OLTP) systems. In the meanwhile, machine learning techniques can reason complex relationships beyond human abilities and perform well on such problems. However, they rely on a large number of training samples for anomalies, which are in serious shortage in both industry and academia due to the difficulty of collection. The problem raises the demand of a benchmark for anomaly reproduction and data collection. In this paper, we propose DBPA, a benchmark for transactional database performance anomalies. Specifically, we identify nine common anomalies rooted in the diverse influence factors. For each anomaly, we carefully design a reproduction procedure, which consists with its root cause in real-world databases. With the reproduction procedures, users can easily generate a dataset in a new environment and extend new anomaly types. For compound anomalies, we provide a generation algorithm that allows users to generate compound anomalies data of any possible combinations with existing collected data. We also provide a large dataset of both normal and anomalous monitoring data collected from various environments, facilitating the training of machine learning models and the evaluation of new algorithms for anomaly diagnosis.

Funder

National Natural Science Foundation of China

ZTE-PKU joint program

Publisher

Association for Computing Machinery (ACM)

Reference75 articles.

1. Dana Van Aken Andrew Pavlo Geoffrey J. Gordon and Bohan Zhang. 2017. Automatic Database Management System Tuning Through Large-scale Machine Learning. In SIGMOD. ACM 1009--1024. Dana Van Aken Andrew Pavlo Geoffrey J. Gordon and Bohan Zhang. 2017. Automatic Database Management System Tuning Through Large-scale Machine Learning. In SIGMOD. ACM 1009--1024.

2. Regularized Cost-Model Oblivious Database Tuning with Reinforcement;Basu Debabrota;Learning. Trans. Large Scale Data Knowl. Centered Syst.,2016

3. Philip A. Bernstein , Istvan Cseri , Nishant Dani , Nigel Ellis , Ajay Kalhan , Gopal Kakivaya , David B. Lomet , Ramesh Manne , Lev Novik , and Tomas Talius . 2011. Adapting microsoft SQL server for cloud computing . In ICDE. IEEE Computer Society , 1255--1263. Philip A. Bernstein, Istvan Cseri, Nishant Dani, Nigel Ellis, Ajay Kalhan, Gopal Kakivaya, David B. Lomet, Ramesh Manne, Lev Novik, and Tomas Talius. 2011. Adapting microsoft SQL server for cloud computing. In ICDE. IEEE Computer Society, 1255--1263.

4. LOF

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3