The study of a nonstationary maximum entropy Markov model and its application on the pos-tagging task

Author:

Xiao Jinghui1,Wang Xiaolong1,Liu Bingquan1

Affiliation:

1. Harbin Institute of Technology, Harbin, China, P.C.

Abstract

Sequence labeling is a core task in natural language processing. The maximum entropy Markov model (MEMM) is a powerful tool in performing this task. This article enhances the traditional MEMM by exploiting the positional information of language elements. The stationary hypothesis is relaxed in MEMM, and the nonstationary MEMM (NS-MEMM) is proposed. Several related issues are discussed in detail, including the representation of positional information, NS-MEMM implementation, smoothing techniques, and the space complexity issue. Furthermore, the asymmetric NS-MEMM presents a more flexible way to exploit positional information. In the experiments, NS-MEMM is evaluated on both the Chinese and the English pos-tagging tasks. According to the experimental results, NS-MEMM yields effective improvements over MEMM by exploiting positional information. The smoothing techniques in this article effectively solve the NS-MEMM data-sparseness problem; the asymmetric NS-MEMM is also an improvement by exploiting positional information in a more flexible way.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3