PLATON: Top-down R-tree Packing with Learned Partition Policy

Author:

Yang Jingyi1ORCID,Cong Gao1ORCID

Affiliation:

1. Nanyang Technological University, Singapore, Singapore

Abstract

The exponential growth of spatial data poses new challenges to the performance of spatial databases. Spatial indexes like R-tree greatly accelerate the query performance and can be effectively constructed through packing, i.e., loading all data into the index at once. However, existing R-tree packing methods rely on a set of fixed heuristic rules, which may not be suitable for different data distributions and workload patterns. To address the limitations of existing R-tree packing methods, we propose PLATON, a top-down R-tree packing method with learned partition policy that explicitly optimizes the query performance with regard to the given data and workload instance. We develop a learned partition policy based on Monte Carlo Tree Search and carefully make design choices for the MCTS exploration strategy and simulation strategy to improve algorithm convergence. We propose a divide and conquer strategy and two optimization techniques, early termination and level-wise sampling, to drastically reduce the MCTS algorithm's time complexity and make it a linear-time algorithm. Experiments on both synthetic and real-world datasets demonstrate the superior performance of PLATON over existing R-tree variants and recently proposed learned/workload-aware spatial indexes.

Funder

Ministry of Education - Singapore

Publisher

Association for Computing Machinery (ACM)

Reference54 articles.

1. [n. d.]. Decimal Degrees. https://en.wikipedia.org/wiki/Decimal_degrees. [n. d.]. Decimal Degrees. https://en.wikipedia.org/wiki/Decimal_degrees.

2. [n. d.]. libspatialindex 1.9.3. https://libspatialindex.org/en/latest/index.html. [n. d.]. libspatialindex 1.9.3. https://libspatialindex.org/en/latest/index.html.

3. [n. d.]. LISA Implementation. https://github.com/pfl-cs/LISA. [n. d.]. LISA Implementation. https://github.com/pfl-cs/LISA.

4. [n. d.]. OpenStreetMap. https://www.openstreetmap.org. [n. d.]. OpenStreetMap. https://www.openstreetmap.org.

5. [n. d.]. RSMI Implementation. https://github.com/Liuguanli/RSMI. [n. d.]. RSMI Implementation. https://github.com/Liuguanli/RSMI.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning for Databases: Foundations, Paradigms, and Open problems;Companion of the 2024 International Conference on Management of Data;2024-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3