1. M. Feurer F. Hutter Hyperparameter optimization Automated machine learning: Methods systems challenges (2019) 3--33. M. Feurer F. Hutter Hyperparameter optimization Automated machine learning: Methods systems challenges (2019) 3--33.
2. Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization
3. L. Li , K. Jamieson , G. DeSalvo , A. Rostamizadeh , A. Talwalkar , Hyperband : Bandit-based configuration evaluation for hyperparameter optimization , in: International Conference on Learning Representations , 2017 . L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, A. Talwalkar, Hyperband: Bandit-based configuration evaluation for hyperparameter optimization, in: International Conference on Learning Representations, 2017.
4. S. Falkner , A. Klein , F. Hutter , BOHB : Robust and efficient hyperparameter optimization at scale , in: International Conference on Machine Learning , 2018 , pp. 1437 -- 1446 . S. Falkner, A. Klein, F. Hutter, BOHB: Robust and efficient hyperparameter optimization at scale, in: International Conference on Machine Learning, 2018, pp. 1437--1446.
5. N. Awad , N. Mallik , F. Hutter , DEHB : Evolutionary Hyberband for scalable, robust and efficient hyperparameter optimization, in: Z. Zhou (Ed.) , Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21 , ijcai.org, 2021 , pp. 2147 -- 2153 . N. Awad, N. Mallik, F. Hutter, DEHB: Evolutionary Hyberband for scalable, robust and efficient hyperparameter optimization, in: Z. Zhou (Ed.), Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, ijcai.org, 2021, pp. 2147--2153.