1. A Theoretical Framework on the Ideal Number of Classifiers for Online Ensembles in Data Streams
2. Mirrored Sampling and Sequential Selection for Evolution Strategies
3. Shauharda Khadka and Kagan Tumer . 2018 . Evolution-Guided Policy Gradient in Reinforcement Learning. In Advances in Neural Information Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R . Garnett (Eds.) , Vol. 31 . Curran Associates, Inc. https://proceedings.neurips.cc/paper/ 2018/file/85fc37b18c57097425b52fc7afbb6969-Paper.pdf Shauharda Khadka and Kagan Tumer. 2018. Evolution-Guided Policy Gradient in Reinforcement Learning. In Advances in Neural Information Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.), Vol. 31. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2018/file/85fc37b18c57097425b52fc7afbb6969-Paper.pdf
4. Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization . In Proceedings of the 3rd International Conference on Learning Representations (ICLR). Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations (ICLR).