MUDD

Author:

Stephens John M.1,Poess Meikel2

Affiliation:

1. Gradient Systems, Redwood City, CA

2. Oracle Corporation, Redwood Shores, CA

Abstract

Today's business intelligence systems consist of hundreds of processors with disk subsystems able to handle multiple Giga-bytes of IO-bandwidth. These systems usually contain terabytes of data. Evaluating database system performance of such systems often requires generating synthetic data with well defined statistical properties. To simulate different scenarios, it is important to vary statistical properties including row counts of tables. Foremost, in order to analyze large scale systems, data generators need to be able to produce hundreds of terabytes of data in a timely fashion. In this paper we present MUDD, a multi-dimensional data generator. Originally designed for TPC-DS, a decision support benchmark being developed by the TPC, MUDD is able to generate up to 100 Terabyte of flat file data in hours, utilizing modern multi processor architectures, including clusters. Its novel design separates data generation algorithms from data distribution definitions, enabling users to adjust their workload to individual needs and different scenarios.

Publisher

Association for Computing Machinery (ACM)

Reference10 articles.

1. Bitton D. DeWitt. D Turbyfill C. Source code for Wisconsin Database Generator distributed on the "Wisconsin Benchmark Tape" Computer Science U. Wisconsin Madison WI. 1984. Bitton D. DeWitt. D Turbyfill C. Source code for Wisconsin Database Generator distributed on the "Wisconsin Benchmark Tape" Computer Science U. Wisconsin Madison WI. 1984.

2. Datatect 'the universal test data generation tool" http://www.quest.com/. Datatect 'the universal test data generation tool" http://www.quest.com/.

3. Quickly generating billion-record synthetic databases

4. OLAP Council APB-1OLAP Benchmark Specification Release IIhttp://www.olapcouncil.org/research/bmarkco.htm 1998. OLAP Council APB-1OLAP Benchmark Specification Release IIhttp://www.olapcouncil.org/research/bmarkco.htm 1998.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data Generation Based on Domain Ontology;Proceedings of the 31st International Conference on Information Systems Development;2023-10-05

2. Enhanced Regular Expression as a DGL for Generation of Synthetic Big Data;J INF PROCESS SYST;2023

3. Beyond TPC-DS, a benchmark for Big Data OLAP systems (BDOLAP-Bench);Future Generation Computer Systems;2022-07

4. Analysis of Benchmark Development Times in the Transaction Processing Performance Council and Ideas on How to Reduce It with a Domain Independent Benchmark Evolution Model;Lecture Notes in Computer Science;2021

5. SmartBench;Proceedings of the VLDB Endowment;2020-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3