The “Horse” Inside

Author:

Sturm Bob L.1

Affiliation:

1. School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK

Abstract

Building systems that possess the sensitivity and intelligence to identify and describe high-level attributes in music audio signals continues to be an elusive goal but one that surely has broad and deep implications for a wide variety of applications. Hundreds of articles have so far been published toward this goal, and great progress appears to have been made. Some systems produce remarkable accuracies at recognizing high-level semantic concepts, such as music style, genre, and mood. However, it might be that these numbers do not mean what they seem. In this article, we take a state-of-the-art music content analysis system and investigate what causes it to achieve exceptionally high performance in a benchmark music audio dataset. We dissect the system to understand its operation, determine its sensitivities and limitations, and predict the kinds of knowledge it could and could not possess about music. We perform a series of experiments to illuminate what the system has actually learned to do and to what extent it is performing the intended music listening task. Our results demonstrate how the initial manifestation of music intelligence in this state of the art can be deceptive. Our work provides constructive directions toward developing music content analysis systems that can address the music information and creation needs of real-world users.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Leveraging Pre-Trained Autoencoders for Interpretable Prototype Learning of Music Audio;2024 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW);2024-04-14

2. We are Not Groupies⋯ We are Band Aids’: Assessment Reliability in the AI Song Contest;Transactions of the International Society for Music Information Retrieval;2021-12-03

3. How to Design a Relevant Corpus for Sleepiness Detection Through Voice?;Frontiers in Digital Health;2021-09-22

4. Beyond the Creative Species;2021-02-23

5. Sociocultural and Design Perspectives on AI-Based Music Production: Why Do We Make Music and What Changes if AI Makes It for Us?;Handbook of Artificial Intelligence for Music;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3