Affiliation:
1. Trinity College Dublin and University College Dublin
2. Trinity College Dublin
Abstract
Agents frequently collaborate to achieve a shared goal or to accomplish a task that they cannot do alone. However, collaboration is difficult in open multi-agent systems where agents share constrained resources to achieve both individual and shared goals. In current approaches to collaboration, agents are organised into disjoint groups and social reasoning is used to capture their capabilities when selecting a qualified set of collaborators. These approaches are not useful when agents are in multiple, overlapping groups; depend on each other when using shared resources; have multiple goals to achieve simultaneously; and have to share the overall costs and benefits. In this article, agents use social reasoning to enhance their understanding of other agents’ goals and their dependencies, and self-adaptive techniques to adapt their level of self-interest in a collaborative process, with a view to contributing to lowering shared costs or increasing shared benefits. This model aims at improving the extent to which agents’ goals are met while improving shared resource usage efficiency. For example, in a public transport system where each mode of transport has limited capacity, commuters will be enabled to make choices that avoid over-capacity in different modes, or in a smart energy grid with limited capacity, users can make choices as to when they increase their demand. The model simultaneously helps avoid overloading a shared resource while allowing users to achieve their own goals. The proposed model is evaluated in an open multi-agent system with 100 agents operating in multiple overlapping groups and sharing multiple constrained resources. The impact of agents’ varying levels of social dependencies, mobility, and their groups’ density on their individual and shared goal achievement is analysed.
Funder
Science Foundation Ireland
Lero—the Irish Software Engineering Research Centre
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Theoretical Computer Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献