Imperative self-adjusting computation

Author:

Acar Umut A.1,Ahmed Amal1,Blume Matthias1

Affiliation:

1. Toyota Technological Institute at Chicago, Chicago, IL

Abstract

Self-adjusting computation enables writing programs that can automatically and efficiently respond to changes to their data (e.g., inputs). The idea behind the approach is to store all data that can change over time in modifiable references and to let computations construct traces that can drive change propagation. After changes have occurred, change propagation updates the result of the computation by re-evaluating only those expressions that depend on the changed data. Previous approaches to self-adjusting computation require that modifiable references be written at most once during execution---this makes the model applicable only in a purely functional setting. In this paper, we present techniques for imperative self-adjusting computation where modifiable references can be written multiple times. We define a language SAIL (Self-Adjusting Imperative Language) and prove consistency, i.e., that change propagation and from-scratch execution are observationally equivalent. Since SAIL programs are imperative, they can create cyclic data structures. To prove equivalence in the presence of cycles in the store, we formulate and use an untyped, step-indexed logical relation, where step indices are used to ensure well-foundedness. We show that SAIL accepts an asymptotically efficient implementation by presenting algorithms and data structures for its implementation. When the number of operations (reads and writes) per modifiable is bounded by a constant, we show that change propagation becomes as efficient as in the non-imperative case. The general case incurs a slowdown that is logarithmic in the maximum number of such operations. We describe a prototype implementation of SAIL as a Standard ML library.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Compositional optimizations for CertiCoq;Proceedings of the ACM on Programming Languages;2021-08-22

2. Incremental $$\lambda $$ -Calculus in Cache-Transfer Style;Programming Languages and Systems;2019

3. Change propagation and bidirectionality in internal transformation DSLs;Software & Systems Modeling;2017-08-21

4. Reactive Imperative Programming with Dataflow Constraints;ACM Transactions on Programming Languages and Systems;2015-01-20

5. Change Propagation in an Internal Model Transformation Language;Theory and Practice of Model Transformations;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3