Automatic inference of stationary fields

Author:

Unkel Christopher1,Lam Monica S.1

Affiliation:

1. Stanford University, Stanford, CA

Abstract

Java programmers can document that the relationship between two objects is unchanging by declaring the field that encodes that relationship to be final. This information can be used in program understanding and detection of errors in new code additions. Unfortunately, few fields in programs are actually declared final. Programs often contain fields that could be final, but are not declared so. Moreover, the definition of final has restrictions on initializationthat limit its applicability. We introduce stationary fields as a generalization of final. A field in a program is stationary if, for every object that contains it, all writes to the field occur before all the reads. Unlike the definition of final fields, there can be multiple writes during initialization, and initialization can span multiple methods. We have developed an efficient algorithm for inferring which fields are stationary in a program, based on the observation that many fields acquire their value very close to object creation. We presume that an object's initialization phase has concluded when its reference is saved in some heap object. We perform precise analysis only regarding recently created objects. Applying our algorithm to real-world Java programs demonstrates that stationary fields are more common than final fields: 44-59% vs. 11-17% respectively in our benchmarks. These surprising results have several significant implications. First, substantial portions of Java programs appear to be written in a functional style. Second, initialization of these fields occurs very close to object creation, when very good alias information is available. These results open the door for more accurate and efficient pointer alias analysis.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Impact of Object Immutability on the Java Class Size;Procedia Computer Science;2020

2. Interdisciplinary programming language design;Proceedings of the 2018 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software;2018-10-24

3. Model checking of concurrent programs with static analysis of field accesses;Science of Computer Programming;2015-02

4. Profiling Field Initialisation in Java;Runtime Verification;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3