A verifiable SSA program representation for aggressive compiler optimization

Author:

Menon Vijay S.1,Glew Neal1,Murphy Brian R.2,McCreight Andrew3,Shpeisman Tatiana1,Adl-Tabatabai Ali-Reza1,Petersen Leaf1

Affiliation:

1. Intel Labs, Santa Clara, CA

2. Intel China Research Center, Beijing, China

3. Yale University, New Haven, CT

Abstract

We present a verifiable low-level program representation to embed, propagate, and preserve safety information in high perfor-mance compilers for safe languages such as Java and C#. Our representation precisely encodes safety information via static single-assignment (SSA) [11, 3] proof variables that are first-class constructs in the program.We argue that our representation allows a compiler to both (1) express aggressively optimized machine-independent code and (2) leverage existing compiler infrastructure to preserve safety information during optimization. We demonstrate that this approach supports standard compiler optimizations, requires minimal changes to the implementation of those optimizations, and does not artificially impede those optimizations to preserve safety. We also describe a simple type system that formalizes type safety in an SSA-style control-flow graph program representation. Through the types of proof variables, our system enables compositional verification of memory safety in optimized code. Finally, we discuss experiences integrating this representation into the machine-independent global optimizer of STARJIT, a high-performance just-in-time compiler that performs aggressive control-flow, data-flow, and algebraic optimizations and is competitive with top production systems.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Static optimization in PHP 7;Proceedings of the 26th International Conference on Compiler Construction;2017-02-05

2. Formal Verification of an SSA-Based Middle-End for CompCert;ACM Transactions on Programming Languages and Systems;2014-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3