Closure conversion is safe for space

Author:

Paraskevopoulou Zoe1,Appel Andrew W.1

Affiliation:

1. Princeton University, USA

Abstract

We formally prove that closure conversion with flat environments for CPS lambda calculus is correct (preserves semantics) and safe for time and space, meaning that produced code preserves the time and space required for the execution of the source program. We give a cost model to pre- and post-closure-conversion code by formalizing profiling semantics that keep track of the time and space resources needed for the execution of a program, taking garbage collection into account. To show preservation of time and space we set up a general, "garbage-collection compatible", binary logical relation that establishes invariants on resource consumption of the related programs, along with functional correctness. Using this framework, we show semantics preservation and space and time safety for terminating source programs, and divergence preservation and space safety for diverging source programs. We formally prove that closure conversion with flat environments for CPS lambda calculus is correct (preserves semantics) and safe for time and space, meaning that produced code preserves the time and space required for the execution of the source program. We give a cost model to pre- and post-closure-conversion code by formalizing profiling semantics that keep track of the time and space resources needed for the execution of a program, taking garbage collection into account. To show preservation of time and space we set up a general, "garbage-collection compatible", binary logical relation that establishes invariants on resource consumption of the related programs, along with functional correctness. Using this framework, we show semantics preservation and space and time safety for terminating source programs, and divergence preservation and space safety for diverging source programs. This is the first formal proof of space-safety of a closure-conversion transformation. The transformation and the proof are parts of the CertiCoq compiler pipeline from Coq (Gallina) through CompCert Clight to assembly language. Our results are mechanized in the Coq proof assistant.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Closure Conversion in Little Pieces;International Symposium on Principles and Practice of Declarative Programming;2023-10-22

2. Defunctionalization with Dependent Types;Proceedings of the ACM on Programming Languages;2023-06-06

3. A High-Level Separation Logic for Heap Space under Garbage Collection;Proceedings of the ACM on Programming Languages;2023-01-09

4. Verified Transformation of Continuation-Passing Style into Static Single Assignment Form;Theoretical Aspects of Software Engineering;2023

5. On Coevaluation Behavior and Equivalence;Mathematics;2022-10-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3