SparseX

Author:

Elafrou Athena1,Karakasis Vasileios2,Gkountouvas Theodoros3,Kourtis Kornilios4,Goumas Georgios1,Koziris Nectarios1

Affiliation:

1. National Technical University of Athens, Athens, Greece

2. Swiss National Supercomputing Centre, ETH Zurich, Lugano, Switzerland

3. Cornell University, New York, USA

4. IBM Reasearch Zurich, Zurich, Switzerland

Abstract

The Sparse Matrix-Vector Multiplication (SpMV) kernel ranks among the most important and thoroughly studied linear algebra operations, as it lies at the heart of many iterative methods for the solution of sparse linear systems, and often constitutes a severe performance bottleneck. Its optimization, which is intimately associated with the data structures used to store the sparse matrix, has always been of particular interest to the applied mathematics and computer science communities and has attracted further attention since the advent of multicore architectures. In this article, we present SparseX, an open source software package for SpMV targeting multicore platforms, that employs the state-of-the-art Compressed Sparse eXtended (CSX) sparse matrix storage format to deliver high efficiency through a highly usable “BLAS-like” interface that requires limited or no tuning. Performance results indicate that our library achieves superior performance over competitive libraries on large-scale problems.

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SpChar: Characterizing the sparse puzzle via decision trees;Journal of Parallel and Distributed Computing;2024-10

2. Block-wise dynamic mixed-precision for sparse matrix-vector multiplication on GPUs;The Journal of Supercomputing;2024-03-11

3. DASP: Specific Dense Matrix Multiply-Accumulate Units Accelerated General Sparse Matrix-Vector Multiplication;Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis;2023-11-11

4. HASpMV: Heterogeneity-Aware Sparse Matrix-Vector Multiplication on Modern Asymmetric Multicore Processors;2023 IEEE International Conference on Cluster Computing (CLUSTER);2023-10-31

5. ReMCOO: An Efficient Representation of Sparse Matrix-Vector Multiplication;2023 IEEE Guwahati Subsection Conference (GCON);2023-06-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3