Robust and reliable defect control for Runge-Kutta methods

Author:

Enright W. H.1,Hayes Wayne B.2

Affiliation:

1. University of Toronto, Ont., Canada

2. University of California, Irvine, Irvine, CA

Abstract

The quest for reliable integration of initial value problems (IVPs) for ordinary differential equations (ODEs) is a long-standing problem in numerical analysis. At one end of the reliability spectrum are fixed stepsize methods implemented using standard floating point, where the onus lies entirely with the user to ensure the stepsize chosen is adequate for the desired accuracy. At the other end of the reliability spectrum are rigorous interval-based methods, that can provide provably correct bounds on the error of a numerical solution. This rigour comes at a price, however: interval methods are generally two to three orders of magnitude more expensive than fixed stepsize floating-point methods. Along the spectrum between these two extremes lie various methods of different expense that estimate and control some measure of the local errors and adjust the stepsize accordingly. In this article, we continue previous investigations into a class of interpolants for use in Runge-Kutta methods that have a defect function whose qualitative behavior is asymptotically independent of the problem being integrated. In particular the point, in a step, where the maximum defect occurs as h → 0 is known a priori. This property allows the defect to be monitored and controlled in an efficient and robust manner even for modestly large stepsizes. Our interpolants also have a defect with the highest possible order given the constraints imposed by the order of the underlying discrete formula. We demonstrate the approach on three Runge-Kutta methods of orders 5, 6, and 8, and provide Fortran and preliminary Matlab interfaces to these three new integrators. We also consider how sensitive such methods are to roundoff errors. Numerical results for four problems on a range of accuracy requests are presented.

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference14 articles.

1. Error backward

2. Dahlquist G. and Björck Å. 1974. Numerical Methods. Automatic Computation Series. Prentice-Hall Englewood Cliffs NJ. Dahlquist G. and Björck Å. 1974. Numerical Methods. Automatic Computation Series. Prentice-Hall Englewood Cliffs NJ.

3. Analysis of Error Control Strategies for Continuous Runge–Kutta Methods

4. A new error-control for initial value solvers

5. The Relative Efficiency of Alternative Defect Control Schemes for High-Order Continuous Runge–Kutta Formulas

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3