A Machine Learning Approach to Indoor Occupancy Detection Using Non-Intrusive Environmental Sensor Data
Author:
Affiliation:
1. Performance Engineering Lab, University College Dublin, Dublin, Ireland
2. IBM Research Ireland, IBM, Dublin, Ireland
Publisher
ACM Press
Reference8 articles.
1. Y. Benezeth, H. Laurent, B. Emile, and C. Rosenberger. Towards a sensor for detecting human presence and characterizing activity. Energy and Buildings, 43(2-3):305--314, 2011.
2. J. Huang and C. X. Ling. Using auc and accuracy in evaluating learning algorithms. IEEE Transactions on knowledge and Data Engineering, 17(3):299--310, 2005.
3. H. M. Khoury and V. R. Kamat. Evaluation of position tracking technologies for user localization in indoor construction environments. Automation in Construction, 18(4):444--457, 2009.
4. K. P. Lam, M. Hoynck, R. Zhang, B. Andrews, Y.-S. Chiou, B. Dong, D. Benitez, et al. Information-theoretic environmental features selection for occupancy detection in open offices. In Eleventh International IBPSA Conference, pages 27--30. Citeseer, 2009.
5. N. Li, G. Calis, and B. Becerik-Gerber. Measuring and monitoring occupancy with an rfid based system for demand-driven hvac operations. Automation in construction, 24:89--99, 2012.
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. LPM: A Lightweight Privacy-Aware Model for $\text{IoT}$ Data Fusion in Smart Connected Homes;2024 9th International Conference on Smart and Sustainable Technologies (SpliTech);2024-06-25
2. Indoor Occupancy Estimation Based on Synergy of Physical Modeling, Environmental Data Fusion, and Machine Learning Frameworks;2024 11th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN);2024-06-03
3. Occupancy modeling on non-intrusive indoor environmental data through machine learning;Building and Environment;2024-04
4. Developing a validated simulation model of micro-zonal air-conditioning to evaluate thermal comfort parameters;Architectural Engineering and Design Management;2024-02-27
5. Smart Buildings: State-Of-The-Art Methods and Data-Driven Applications;Digital Innovations in Architecture, Engineering and Construction;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3