Classification of Benign and Malignant Breast Mass in Digital Mammograms with Convolutional Neural Networks
Author:
Affiliation:
1. College of Information Engineering, Dalian University, Dalian, China
2. Information Science and Technology College, Dalian Maritime University, Dalian, China
3. School of Biomedical Engineering, Dalian University of technology, Dalian, China
Publisher
ACM Press
Reference25 articles.
1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ. Cancer statistics. CA Cancer J Clin, 58(2):71--96, 2008.
2. GigerML, PritzkerA. Medical imaging and computers in the diagnosis of breast cancer. In: SPIE optical engineering + applications. International Society for Optics and Photonics, p 908--918, 2014.
3. A. Jalalian, S. B. T. Mashohor, H. R. Mahmud, M. I. B. Saripan, A. R. B. Ramli, and B. Karasfi, "Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review," Clinical Imaging, vol. 37, no. 3, pp. 420--426, 2013.
4. Krishnan, M. et al. Statistical analysis of mammographic features and its classification using support vector machine. Expert Systems with Applications 37(1), 470--478 (2010).
5. Akay, M. F. Support vector machines combined with feature selection for breast cancer diagnosis. Expert systems with applications 36(2), 3240--3247 (2009).
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An optimized ensemble classifier for mammographic mass classification;Computers and Electrical Engineering;2024-10
2. Segmentation and classification of mammographic abnormalities using local binary patterns and deep learning;17th International Workshop on Breast Imaging (IWBI 2024);2024-05-29
3. Early Detection of Breast Cancer Using Pretrained AlexNet Convolutional Neural Network;2023 Fourth International Conference on Information Systems and Software Technologies (ICI2ST);2023-11-22
4. Edge detection and graph neural networks to classify mammograms: A case study with a dataset from Vietnamese patients;Applied Soft Computing;2023-02
5. Deep convolutional neural networks for computer-aided breast cancer diagnostic: a survey;Neural Computing and Applications;2022-01-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3