QASMBench: A Low-Level Quantum Benchmark Suite for NISQ Evaluation and Simulation

Author:

Li Ang1ORCID,Stein Samuel1ORCID,Krishnamoorthy Sriram1ORCID,Ang James1ORCID

Affiliation:

1. Pacific Northwest National Laboratory, Richland, USA

Abstract

The rapid development of quantum computing (QC) in the NISQ era urgently demands a low-level benchmark suite and insightful evaluation metrics for characterizing the properties of prototype NISQ devices, the efficiency of QC programming compilers, schedulers and assemblers, and the capability of quantum system simulators in a classical computer. In this work, we fill this gap by proposing a low-level, easy-to-use benchmark suite called QASMBench based on the OpenQASM assembly representation. It consolidates commonly used quantum routines and kernels from a variety of domains including chemistry, simulation, linear algebra, searching, optimization, arithmetic, machine learning, fault tolerance, cryptography, and so on, trading-off between generality and usability. To analyze these kernels in terms of NISQ device execution, in addition to circuit width and depth, we propose four circuit metrics including gate density, retention lifespan, measurement density, and entanglement variance, to extract more insights about the execution efficiency, the susceptibility to NISQ error, and the potential gain from machine-specific optimizations. Applications in QASMBench can be launched and verified on several NISQ platforms, including IBM-Q, Rigetti, IonQ and Quantinuum. For evaluation, we measure the execution fidelity of a subset of QASMBench applications on 12 IBM-Q machines through density matrix state tomography, comprising 25K circuit evaluations. We also compare the fidelity of executions among the IBM-Q machines, the IonQ QPU and the Rigetti Aspen M-1 system. QASMBench is released at: http://github.com/pnnl/QASMBench .

Funder

U.S. Department of Energy, Office of Science, National Quantum Information Science Research Centers, Co-design Center for Quantum Advantage

DOE Office of Science User Facility

Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy

Publisher

Association for Computing Machinery (ACM)

Subject

General Medicine

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrating quantum computing resources into scientific HPC ecosystems;Future Generation Computer Systems;2024-12

2. UPBEAT: Test Input Checks of Q# Quantum Libraries;Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis;2024-09-11

3. Simulating thermodynamic properties of dinuclear metal complexes using Variational Quantum Algorithms;Physica Scripta;2024-08-27

4. Robust Qubit Mapping Algorithm via Double-Source Optimal Routing on Large Quantum Circuits;ACM Transactions on Quantum Computing;2024-08-03

5. ARQUIN : Architectures for Multinode Superconducting Quantum Computers;ACM Transactions on Quantum Computing;2024-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3