A parametric segmentation functor for fully automatic and scalable array content analysis

Author:

Cousot Patrick1,Cousot Radhia2,Logozzo Francesco3

Affiliation:

1. New York University, New York, NY, USA

2. École normale supérieure, Paris, France

3. Microsoft Research, Redmond, WA, USA

Abstract

We introduce FunArray, a parametric segmentation abstract domain functor for the fully automatic and scalable analysis of array content properties. The functor enables a natural, painless and efficient lifting of existing abstract domains for scalar variables to the analysis of uniform compound data-structures such as arrays and collections. The analysis automatically and semantically divides arrays into consecutive non-overlapping possibly empty segments. Segments are delimited by sets of bound expressions and abstracted uniformly. All symbolic expressions appearing in a bound set are equal in the concrete. The FunArray can be naturally combined via reduced product with any existing analysis for scalar variables. The analysis is presented as a general framework parameterized by the choices of bound expressions, segment abstractions and the reduction operator. Once the functor has been instantiated with fixed parameters, the analysis is fully automatic. We first prototyped FunArray in Arrayal to adjust and experiment with the abstractions and the algorithms to obtain the appropriate precision/ratio cost. Then we implemented it into Clousot, an abstract interpretation-based static contract checker for .NET. We empirically validated the precision and the performance of the analysis by running it on the main libraries of .NET and on its own code. We were able to infer thousands of non-trivial invariants and verify the implementation with a modest overhead (circa 1%). To the best of our knowledge this is the first analysis of this kind applied to such a large code base, and proven to scale.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Precise Compositional Buffer Overflow Detection via Heap Disjointness;Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis;2024-09-11

2. An input–output relational domain for algebraic data types and functional arrays;Formal Methods in System Design;2024-06-13

3. A Personal Historical Perspective on Abstract Interpretation;The French School of Programming;2023-10-11

4. Static Analysis for Data Scientists;Intelligent Systems Reference Library;2023

5. Full-program induction: verifying array programs sans loop invariants;International Journal on Software Tools for Technology Transfer;2022-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3