Spectral Total-variation Processing of Shapes—Theory and Applications

Author:

Brokman Jonathan1ORCID,Burger Martin2ORCID,Gilboa Guy1ORCID

Affiliation:

1. Technion - Israel Institute of Technology, Haifa, Israel

2. Helmholtz Imaging, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany and Fachbereich Mathematik, Universität Hamburg, Hamburg, Germany

Abstract

We present a comprehensive analysis of total variation (TV) on non-Euclidean domains and its eigenfunctions. We specifically address parameterized surfaces, a natural representation of the shapes used in 3D graphics. Our work sheds new light on the celebrated Beltrami and Anisotropic TV flows and explains experimental findings from recent years on shape spectral TV [Fumero et al. 2020 ] and adaptive anisotropic spectral TV [Biton and Gilboa 2022 ]. A new notion of convexity on surfaces is derived by characterizing structures that are stable throughout the TV flow, performed on surfaces. We establish and numerically demonstrate quantitative relationships between TV, area, eigenvalue, and eigenfunctions of the TV operator on surfaces. Moreover, we expand the shape spectral TV toolkit to include zero-homogeneous flows, leading to efficient and versatile shape processing methods. These methods are exemplified through applications in smoothing, enhancement, and exaggeration filters. We introduce a novel method that, for the first time, addresses the shape deformation task using TV. This deformation technique is characterized by the concentration of deformation along geometrical bottlenecks, shown to coincide with the discontinuities of eigenfunctions. Overall, our findings elucidate recent experimental observations in spectral TV, provide a diverse framework for shape filtering, and present the first TV-based approach to shape deformation.

Funder

DESY

Israel Science Foundation

Ministry of Science and Technology

Ollendorff Minerva Center

European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie

Publisher

Association for Computing Machinery (ACM)

Reference73 articles.

1. Scale invariant geometry for nonrigid shapes;Aflalo Yonathan;SIAM J. Imag. Sci.,2013

2. Minimizing total variation flow;Andreu F.;Different. Integ. Equat.,2001

3. Structure-texture image decomposition—modeling, algorithms, and parameter selection;Aujol Jean-François;Int. J. Comput. Vis.,2006

4. The total variation flow in \(\mathbb {R}^N\);Bellettini G.;J. Different. Equat.,2002

5. Matania Ben-Artzi and Philippe G. LeFloch. 2007. Well-posedness theory for geometry-compatible hyperbolic conservation laws on manifolds. In Annales de l’Institut Henri Poincaré C, Analyse non linéaire, Vol. 24. Elsevier, 989–1008.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3