Instrumentation bias for dynamic data race detection

Author:

Wood Benjamin P.1,Cao Man2,Bond Michael D.3,Grossman Dan4

Affiliation:

1. Wellesley College, USA

2. Google, USA

3. Ohio State University, USA

4. University of Washington, USA

Abstract

This paper presents Fast Instrumentation Bias (FIB), a sound and complete dynamic data race detection algorithm that improves performance by reducing or eliminating the costs of analysis atomicity. In addition to checking for errors in target programs, dynamic data race detectors must introduce synchronization to guard against metadata races that may corrupt analysis state and compromise soundness or completeness. Pessimistic analysis synchronization can account for nontrivial performance overhead in a data race detector. The core contribution of FIB is a novel cooperative ownership-based synchronization protocol whose states and transitions are derived purely from preexisting analysis metadata and logic in a standard data race detection algorithm. By exploiting work already done by the analysis, FIB ensures atomicity of dynamic analysis actions with zero additional time or space cost in the common case. Analysis of temporally thread-local or read-shared accesses completes safely with no synchronization. Uncommon write-sharing transitions require synchronous cross-thread coordination to ensure common cases may proceed synchronization-free. We implemented FIB in the Jikes RVM Java virtual machine. Experimental evaluation shows that FIB eliminates nearly all instrumentation atomicity costs on programs where data often experience windows of thread-local access. Adaptive extensions to the ownership policy effectively eliminate high coordination costs of the core ownership protocol on programs with high rates of serialized sharing. FIB outperforms a naive pessimistic synchronization scheme by 50% on average. Compared to a tuned optimistic metadata synchronization scheme based on conventional fine-grained atomic compare-and-swap operations, FIB is competitive overall, and up to 17% faster on some programs. Overall, FIB effectively exploits latent analysis and program invariants to bring strong integrity guarantees to an otherwise unsynchronized data race detection algorithm at minimal cost.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inclusive Portraits: Race-Aware Human-in-the-Loop Technology;Equity and Access in Algorithms, Mechanisms, and Optimization;2023-10-30

2. Dynamic Race Detection with O(1) Samples;Proceedings of the ACM on Programming Languages;2023-01-09

3. A tree clock data structure for causal orderings in concurrent executions;Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems;2022-02-22

4. BlockRace;Proceedings of the IEEE/ACM 1st International Conference on Automation of Software Test;2020-09-12

5. Atomicity Checking in Linear Time using Vector Clocks;Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems;2020-03-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3