Privacy-preserving classification of vertically partitioned data via random kernels

Author:

Mangasarian Olvi L.1,Wild Edward W.1,Fung Glenn M.2

Affiliation:

1. University of Wisconsin-Madison, Madison, WI

2. Siemens Medical Solutions, Inc., Malvern, PA

Abstract

We propose a novel privacy-preserving support vector machine (SVM) classifier for a data matrix A whose input feature columns are divided into groups belonging to different entities. Each entity is unwilling to share its group of columns or make it public. Our classifier is based on the concept of a reduced kernel K ( A , B ′), where B ′ is the transpose of a random matrix B . The column blocks of B corresponding to the different entities are privately generated by each entity and never made public. The proposed linear or nonlinear SVM classifier, which is public but does not reveal any of the privately held data, has accuracy comparable to that of an ordinary SVM classifier that uses the entire set of input features directly.

Funder

National Science Foundation

Division of Information and Intelligent Systems

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference32 articles.

1. Bennett K. P. and Demiriz A. 1998. Semi-Supervised support vector machines. In Advances in Neural Information Processing Systems -10- M. S. Kearns et al. eds. MIT Press Cambridge MA 368--374. Bennett K. P. and Demiriz A. 1998. Semi-Supervised support vector machines. In Advances in Neural Information Processing Systems -10- M. S. Kearns et al. eds. MIT Press Cambridge MA 368--374.

2. Privacy Preserving Data Classification with Rotation Perturbation

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fairness-Driven Private Collaborative Machine Learning;ACM Transactions on Intelligent Systems and Technology;2024-02-22

2. Achieving Privacy-Preserving Outsourced SVM Training with Non-Linear Kernel;GLOBECOM 2023 - 2023 IEEE Global Communications Conference;2023-12-04

3. Federated Learning and Meta Learning: Approaches, Applications, and Directions;IEEE Communications Surveys & Tutorials;2023

4. Vertically Federated Learning with Correlated Differential Privacy;Electronics;2022-11-29

5. Budget Distributed Support Vector Machine for Non-ID Federated Learning Scenarios;ACM Transactions on Intelligent Systems and Technology;2022-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3