Communication power optimization in a sensor network with a path-constrained mobile observer

Author:

Chakrabarti Arnab1,Sabharwal Ashutosh1,Aazhang Behnaam1

Affiliation:

1. Rice University, Houston, TX

Abstract

We present a procedure for communication power optimization in a network of randomly distributed sensors with an observer (data collector) moving on a fixed path. The key challenge in using a mobile observer is that it remains within communication range of any sensor for a brief duration, and inability to transfer data in this duration leads to data loss. We establish that the process of data collection can be modeled by a queue with deadlines, where arrivals correspond to the observer entering the range of a sensor and a missed deadline means data loss. The queuing model is then used to identify the combination of system parameters that ensures adequate data collection with minimum power. The results obtained from the queuing analogy take a simple form in the asymptotic regime of dense sensor networks. Additionally, for sensor networks that cannot tolerate data loss, we derive a tight bound on minimum sensor separation that ensures that no data will be lost on account of mobility. We present two examples to illustrate our results, from which it is seen that power reduction by two orders of magnitude or more is typical relative to a static sensor network. The scenarios chosen for power comparisons also provide guidelines on the choice of path, if such a choice is available.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference17 articles.

1. Ailawadhi V. 2002. Mobility issue in hybrid ad hoc wireless sensor networks. Ph.D. dissertation Electrical Engineering Department University of California Los Angeles Los Angeles CA. Ailawadhi V. 2002. Mobility issue in hybrid ad hoc wireless sensor networks. Ph.D. dissertation Electrical Engineering Department University of California Los Angeles Los Angeles CA.

2. Optimal scheduling with strict deadlines;Bhattacharya P.;IEEE Trans. Automat. Contr.,1989

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3