Semantic database modeling: survey, applications, and research issues

Author:

Hull Richard1,King Roger2

Affiliation:

1. Univ. of Southern California, Los Angeles

2. Univ. of Colorado, Boulder

Abstract

Most common database management systems represent information in a simple record-based format. Semantic modeling provides richer data structuring capabilities for database applications. In particular, research in this area has articulated a number of constructs that provide mechanisms for representing structurally complex interrelations among data typically arising in commercial applications. In general terms, semantic modeling complements work on knowledge representation (in artificial intelligence) and on the new generation of database models based on the object-oriented paradigm of programming languages. This paper presents an in-depth discussion of semantic data modeling. It reviews the philosophical motivations of semantic models, including the need for high-level modeling abstractions and the reduction of semantic overloading of data type constructors. It then provides a tutorial introduction to the primary components of semantic models, which are the explicit representation of objects, attributes of and relationships among objects, type constructors for building complex types, ISA relationships, and derived schema components. Next, a survey of the prominent semantic models in the literature is presented. Further, since a broad area of research has developed around semantic modeling, a number of related topics based on these models are discussed, including data languages, graphical interfaces, theoretical investigations, and physical implementation strategies.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 611 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Graph-Based Patent Mining for Mechanical Designs;2024 14th International Conference on Electrical Engineering (ICEENG);2024-05-21

2. Designing a heuristic model for SMART management in the medium industrial enterprise;AIP Conference Proceedings;2024

3. Conceptual Modeling: Topics, Themes, and Technology Trends;ACM Computing Surveys;2023-07-17

4. How Large Language Models Will Disrupt Data Management;Proceedings of the VLDB Endowment;2023-07

5. Gender differences and transferring knowledge in database modeling;Computer Science Education;2023-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3