Affiliation:
1. National Taiwan University
Abstract
Matrix factorization is known to be an effective method for recommender systems that are given only the ratings from users to items. Currently, stochastic gradient (SG) method is one of the most popular algorithms for matrix factorization. However, as a sequential approach, SG is difficult to be parallelized for handling web-scale problems. In this article, we develop a fast parallel SG method, FPSG, for shared memory systems. By dramatically reducing the cache-miss rate and carefully addressing the load balance of threads, FPSG is more efficient than state-of-the-art parallel algorithms for matrix factorization.
Funder
National Taiwan University
National Science Council of Taiwan
MediaTek Fellowship
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Theoretical Computer Science
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献