LOD Generation for Urban Scenes

Author:

Verdie Yannick1,Lafarge Florent1,Alliez Pierre1

Affiliation:

1. Inria Sophia Antipolis - Méditerranée, Valbonne, France

Abstract

We introduce a novel approach that reconstructs 3D urban scenes in the form of levels of detail (LODs). Starting from raw datasets such as surface meshes generated by multiview stereo systems, our algorithm proceeds in three main steps: classification, abstraction, and reconstruction. From geometric attributes and a set of semantic rules combined with a Markov random field, we classify the scene into four meaningful classes. The abstraction step detects and regularizes planar structures on buildings, fits icons on trees, roofs, and facades, and performs filtering and simplification for LOD generation. The abstracted data are then provided as input to the reconstruction step which generates watertight buildings through a min-cut formulation on a set of 3D arrangements. Our experiments on complex buildings and large-scale urban scenes show that our approach generates meaningful LODs while being robust and scalable. By combining semantic segmentation and abstraction, it also outperforms general mesh approximation approaches at preserving urban structures.

Funder

ERC Starting Grant "Robust Geometry Processing"

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference51 articles.

1. Acute3D. 2014. http://www.acute3d.com/. Acute3D. 2014. http://www.acute3d.com/.

2. O-snap

3. Mesh Segmentation - A Comparative Study

4. Autodesk. 2014. http://www.123dapp.com/catch. Autodesk. 2014. http://www.123dapp.com/catch.

Cited by 138 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From aerial LiDAR point clouds to multiscale urban representation levels by a parametric resampling;Computers & Graphics;2024-10

2. Point2Building: Reconstructing buildings from airborne LiDAR point clouds;ISPRS Journal of Photogrammetry and Remote Sensing;2024-09

3. SemanticMesh: parameterized fusion of semantic components for photogrammetric meshes;Geo-spatial Information Science;2024-08-07

4. UMeshSegNet: Semantic Segmentation of 3D Mesh Generated from UAV Photogrammetry *;2024 IEEE 18th International Conference on Control & Automation (ICCA);2024-06-18

5. Efficient High-Quality Vectorized Modeling of Large-Scale Scenes;International Journal of Computer Vision;2024-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3