Affiliation:
1. Pennsylvania State University, University Park, PA, USA
Abstract
Inferring social relationships from user location data has become increasingly important for real-world applications, such as recommendation, advertisement targeting, and transportation scheduling. Most existing mobility relationship measures are based on pairwise meeting frequency, that it, the more frequently two users meet (i.e., co-locate at the same time), the more likely that they are friends. However, such frequency-based methods suffer greatly from data sparsity challenge. Due to data collection limitation and bias in the real world (e.g., check-in data), the observed meeting events between two users might be very few. On the other hand, existing methods focus too much on the interactions between two users, but fail to incorporate the whole social network structure. For example, the relationship propagation is not well utilized in existing methods. In this paper, we propose to construct a user graph based on their spatial-temporal interactions and employ graph embedding technique to learn user representations from such a graph. The similarity measure of such representations can well describe mobility relationship and it is particularly useful to describe the similarity for user pairs with low or even zero meeting frequency. Furthermore, we introduce semantic information on meeting events by using point-of-interest (POI) categorical information. Additionally, when part of the social graph is available as friendship ground truth, we can easily encode such online social network information through a joint graph embedding. Experiments on two real-world datasets demonstrate the effectiveness of our proposed method.
Funder
National Natural Science Foundation of China
National Science Foundation
China Scholarship Council
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献