Cross-site Prediction on Social Influence for Cold-start Users in Online Social Networks

Author:

Gong Qingyuan1,Chen Yang1,He Xinlei1,Xiao Yu2,Hui Pan3,Wang Xin4,Fu Xiaoming5

Affiliation:

1. School of Computer Science, Fudan University, China and Shanghai Key Lab of Intelligent Information Processing, Fudan University, China and Peng Cheng Laboratory, Shenzhen, China

2. Department of Communications and Networking, Aalto University, Espoo, Finland

3. Department of Computer Science, University of Helsinki, Finland and CSE Department, Hong Kong University of Science and Technology, Kowloon, Hong Kong

4. School of Computer Science, Fudan University, China and Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai, China

5. Institute of Computer Science, University of Göttingen, Göttingen, Germany

Abstract

Online social networks (OSNs) have become a commodity in our daily life. As an important concept in sociology and viral marketing, the study of social influence has received a lot of attentions in academia. Most of the existing proposals work well on dominant OSNs, such as Twitter, since these sites are mature and many users have generated a large amount of data for the calculation of social influence. Unfortunately, cold-start users on emerging OSNs generate much less activity data, which makes it challenging to identify potential influential users among them. In this work, we propose a practical solution to predict whether a cold-start user will become an influential user on an emerging OSN, by opportunistically leveraging the user’s information on dominant OSNs. A supervised machine learning-based approach is adopted, transferring the knowledge of both the descriptive information and dynamic activities on dominant OSNs. Descriptive features are extracted from the public data on a user’s homepage. In particular, to extract useful information from the fine-grained dynamic activities that cannot be represented by the statistical indices, we use deep learning technologies to deal with the sequential activity data. Using the real data of millions of users collected from Twitter (a dominant OSN) and Medium (an emerging OSN), we evaluate the performance of our proposed framework to predict prospective influential users. Our system achieves a high prediction performance based on different social influence definitions.

Funder

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3