Understanding the Performance Implications of the Design Principles in Storage-Disaggregated Databases

Author:

Pang Xi1ORCID,Wang Jianguo1ORCID

Affiliation:

1. Purdue University, West Lafayette, IN, USA

Abstract

Storage-compute disaggregation has recently emerged as a novel architecture in modern data centers, particularly in the cloud. By decoupling compute from storage, this new architecture enables independent and elastic scaling of compute and storage resources, potentially increasing resource utilization and reducing overall costs. To best leverage the disaggregated architecture, a new breed of database systems termed storage-disaggregated databases has recently been developed, such as Amazon Aurora, Microsoft Socrates, Google AlloyDB, Alibaba PolarDB, and Huawei Taurus. However, little is known about the effectiveness of the design principles in these databases since they are typically developed by industry giants, and only the overall performance results are presented without detailing the impact of individual design principles. As a result, many critical research questions remain unclear, such as the performance impact of storage-disaggregation, the log-as-the-database design, shared-storage, and various log-replay methods. In this paper, we investigate the performance implications of the design principles that are widely adopted in storage-disaggregated databases for the first time. As these databases were usually not open-sourced, we have made a significant effort to implement a storage-disaggregated database prototype based on PostgreSQL v13.0. By fully controlling and instrumenting the codebase, we are able to selectively enable and disable individual optimizations and techniques to evaluate their impact on performance in various scenarios. Furthermore, we open-source our storage-disaggregated database prototype for use by the broader database research community, fostering collaboration and innovation in this field.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Reference43 articles.

1. [n.d.]. AlloyDB for PostgreSQL https://cloud.google.com/alloydb.

2. [n.d.]. Choose between SSD and HDD Storage https://cloud.google.com/sql/docs/mysql/choosing-ssd-hdd.

3. [n.d.]. Full Page Writes in PostgreSQL https://wiki.postgresql.org/wiki/Full_page_writes.

4. [n.d.]. Neon https://github.com/neondatabase/neon.

5. [n.d.]. PolarDB for PostgreSQL https://github.com/ApsaraDB/PolarDB-for-PostgreSQL.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3