Affiliation:
1. Université de Montréal, Montreal, Canada
2. ETH Zürich, Zurich, Switzerland
Abstract
We present a method for computational modeling, mechanical characterization, and macro-scale simulation of discrete interlocking materials (DIM)---3D-printed chainmail fabrics made of quasi-rigid interlocking elements. Unlike conventional elastic materials for which deformation and restoring force are directly coupled, the mechanics of DIM are governed by contacts between individual elements that give rise to anisotropic deformation constraints. To model the mechanical behavior of these materials, we propose a computational approach that builds on three key components. (
a
): we explore the space of feasible deformations using native-scale simulations at the per-element level. (
b
): based on this simulation data, we introduce the concept of strain-space boundaries to represent deformation limits for in- and out-of-plane deformations, and (
c
): we use the strain-space boundaries to drive an efficient macro-scale simulation model based on homogenized deformation constraints. We evaluate our method on a set of representative discrete interlocking materials and validate our findings against measurements on physical prototypes.
Funder
Canada Foundation for Innovation
Natural Sciences and Engineering Research Council of Canada
European Research Council
Swiss National Science Foundation
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献