Finding a maximum likelihood tree is hard

Author:

Chor Benny1,Tuller Tamir1

Affiliation:

1. Tel-Aviv University, Tel-Aviv, Israel

Abstract

Maximum likelihood (ML) is an increasingly popular optimality criterion for selecting evolutionary trees [Felsenstein 1981]. Finding optimal ML trees appears to be a very hard computational task, but for tractable cases, ML is the method of choice. In particular, algorithms and heuristics for ML take longer to run than algorithms and heuristics for the second major character based criterion, maximum parsimony (MP). However, while MP has been known to be NP-complete for over 20 years [Foulds and Graham, 1982; Day et al. 1986], such a hardness result for ML has so far eluded researchers in the field.An important work by Tuffley and Steel [1997] proves quantitative relations between the parsimony values of given sequences and the corresponding log likelihood values. However, a direct application of their work would only give an exponential time reduction from MP to ML. Another step in this direction has recently been made by Addario-Berry et al. [2004], who proved that ancestral maximum likelihood (AML) is NP-complete. AML “lies in between” the two problems, having some properties of MP and some properties of ML. Still, the AML proof is not directly applicable to the ML problem.We resolve the question, showing that “regular” ML on phylogenetic trees is indeed intractable. Our reduction follows the vertex cover reductions for MP [Day et al. 1986] and AML [Addario-Berry et al. 2004], but its starting point is an approximation version of vertex cover, known as gap vc. The crux of our work is not the reduction, but its correctness proof. The proof goes through a series of tree modifications, while controlling the likelihood losses at each step, using the bounds of Tuffley and Steel [1997]. The proof can be viewed as correlating the value of any ML solution to an arbitrarily close approximation to vertex cover.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3