Revisiting Clustered Microarchitecture for Future Superscalar Cores

Author:

Michaud Pierre1,Mondelli Andrea1,Seznec André1

Affiliation:

1. IRISA/Inria, Rennes Cedex, France

Abstract

During the past 10 years, the clock frequency of high-end superscalar processors has not increased. Performance keeps growing mainly by integrating more cores on the same chip and by introducing new instruction set extensions. However, this benefits only some applications and requires rewriting and/or recompiling these applications. A more general way to accelerate applications is to increase the IPC, the number of instructions executed per cycle. Although the focus of academic microarchitecture research moved away from IPC techniques, the IPC of commercial processors was continuously improved during these years. We argue that some of the benefits of technology scaling should be used to raise the IPC of future superscalar cores further. Starting from microarchitecture parameters similar to recent commercial high-end cores, we show that an effective way to increase the IPC is to allow the out-of-order engine to issue more micro-ops per cycle. But this must be done without impacting the clock cycle. We propose combining two techniques: clustering and register write specialization. Past research on clustered microarchitectures focused on narrow issue clusters, as the emphasis at that time was on allowing high clock frequencies. Instead, in this study, we consider wide issue clusters, with the goal of increasing the IPC under a constant clock frequency. We show that on a wide issue dual cluster, a very simple steering policy that sends 64 consecutive instructions to the same cluster, the next 64 instructions to the other cluster, and so forth, permits tolerating an intercluster delay of three cycles. We also propose a method for decreasing the energy cost of sending results from one cluster to the other cluster.

Funder

European Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toward Practical 128-Bit General Purpose Microarchitectures;IEEE Computer Architecture Letters;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3