Redundancy Does Not Imply Fault Tolerance

Author:

Ganesan Aishwarya1,Alagappan Ramnatthan1,Arpaci-Dusseau Andrea C.1,Arpaci-Dusseau Remzi H.1

Affiliation:

1. University of Wisconsin—Madison, Madison, WI

Abstract

We analyze how modern distributed storage systems behave in the presence of file-system faults such as data corruption and read and write errors. We characterize eight popular distributed storage systems and uncover numerous problems related to file-system fault tolerance. We find that modern distributed systems do not consistently use redundancy to recover from file-system faults: a single file-system fault can cause catastrophic outcomes such as data loss, corruption, and unavailability. We also find that the above outcomes arise due to fundamental problems in file-system fault handling that are common across many systems. Our results have implications for the design of next-generation fault-tolerant distributed and cloud storage systems.

Funder

EMC

Google

Seagate

Facebook

Huawei Technologies

NetApp

Veritas

Microsoft

National Science Foundation

U.S. Department of Energy

Samsung

VMWare

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture

Reference100 articles.

1. Cords Tool and Results. 2017. Retrieved from http://research.cs.wisc.edu/adsl/Software/cords/. Cords Tool and Results. 2017. Retrieved from http://research.cs.wisc.edu/adsl/Software/cords/.

2. Apache. Cassandra. Retrieved from http://cassandra.apache.org/. Apache. Cassandra. Retrieved from http://cassandra.apache.org/.

3. Apache. Kakfa. Retrieved from http://kafka.apache.org/. Apache. Kakfa. Retrieved from http://kafka.apache.org/.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enabling Reliable Memory-Mapped I/O With Auto-Snapshot for Persistent Memory Systems;IEEE Transactions on Computers;2024-09

2. When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection;Proceedings of the VLDB Endowment;2024-07

3. Global Message Ordering using Distributed Kafka Clusters;2023 15th International Conference on Innovations in Information Technology (IIT);2023-11-14

4. Verify, And Then Trust: Data Inconsistency Detection in ZooKeeper;Proceedings of the 10th Workshop on Principles and Practice of Consistency for Distributed Data;2023-05-08

5. Enhancing Fault Injection Testing of Service Systems via Fault-Tolerance Bottleneck;IEEE Transactions on Software Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3